

A New Path: The NASA Authorization Act of 2010

- The Congress approved and the President signed the National Aeronautics and Space Administration Authorization Act of 2010
 - Bipartisan support for human exploration beyond Low Earth Orbit

• The law authorizes:

- Extension of the International Space Station until at least 2020
- Strong support for a <u>commercial space transportation</u> industry
- Development of a <u>multi-purpose Crew Vehicle and</u> <u>heavy lift launch capabilities</u>
- A "<u>flexible path</u>" approach to space exploration opening up vast opportunities including near-Earth asteroids and Mars
- New <u>space technology</u> investments to increase the capabilities beyond Low Earth Orbit

ESMD Positioned to Respond to Authorization Act

- Currently operating under a Continuing Resolution until March 4, 2011
- Using internal study teams to provide plans in response to NASA Authorization Act of 2010
 - Orion, Heavy Lift, Commercial Crew & Cargo, Technology and Exploration Precursor Robotics all reworking plans in response to the Act's provisions
- Study Team efforts are informed by Auth Act direction and results of Human Exploration Framework Team (HEFT) ongoing analysis
- HEFT is the architectural planning and analysis function for human exploration, providing decision support to NASA senior leadership on end-toend HSF needs, which drive near-term priority decisions
 - Not a decision-making body
 - Analyses consider technical, programmatic, and fiscal constraints; their trade studies seek to drive out affordable multi-destination architecture options that meet stakeholder priorities
 - Analyses enable Agency level strategic and technical decisions

Technology to Enable the Next Explorers To Go Beyond: Robonaut 2 (R2) ISS Flight Demo

Experimental Objectives

- Test dexterous manipulation in 0g
- Test robot-crew safety in 0g
- Refine control based on tests

Experiment Plan

- R2 Tested IV (IV=intra-vehicle) on fixed stanchion
- R2 Shipped with IV taskboard
- Crew will add new experiments

Future Upgrades

- Upgrade software with revisions
- Add mobility with 0g climbing legs
- Upgrade backpack for mobility
- Upgrade torso for EVA

http://robonaut.jsc.nasa.gov/

Radiation Assessment Detector Integrated Into Mars Science Laboratory Rover

- Summary: The Mars Science Laboratory mission's Radiation Assessment Detector, or RAD, will monitor radiation both during the trip to Mars and on the Martian surface.
- Description: The RAD has an upward-pointing, wide-angle telescope that measures and identifies high-energy atomic and subatomic particles. These particles come directly from the sun, distant supernovas and other sources and from secondary radiation in the Martian atmosphere, rocks and soils.
- Time Frame: The RAD was installed in October 2010 in preparation for a November 2011 launch.
- Space Application: Data from the RAD will help NASA plan human missions beyond Earth orbit by reducing uncertainty about how much radiation protection future astronauts will need.
- More information:
 http://mars.jpl.nasa.gov/msl/mission/instruments/radiationdetectors/rad/

The RAD instrument, shown above, was installed in the Mars Science Laboratory Rover.

Images credit: Jet Propulsion Laboratory

SpaceX Status

- Milestones 1-17 and 20 completed for payments to date of \$258M out of \$278M.
- Falcon 9 maiden flight successfully reached orbit on June 4.
- COTS Milestone 17 Demo Flight 1 successfully accomplished on December 8.
 - All primary mission objectives successfully demonstrated
 - Falcon 9 launch and Dragon insertion to orbit
 - Dragon separation
 - Safe reentry
 - All other mission objectives successful
- Demo Flight 2 mission planned for June 2011.
 - Rendezvous and proximity operations with ISS
 - ISS communication demonstration
- Demo Flight 3 mission planned for September 2011.
 - Berthing operations with ISS
 - Cargo transfer demonstration
- SpaceX has proposed combining Demo Flight 2 and 3.
 NASA is considering that proposal.

Commercial Crew Development Round 2

- CCDev 2 Announcement for Proposals was released to industry on October 25, 2010. Proposals were due on December 13, 2010.
- The goals of CCDev 2 investments are to:
 - advance orbital commercial crew transportation system (CTS) concepts
 - and enable significant progress on maturing the design and development of elements of the system, such as launch vehicles and spacecraft, while ensuring crew and passenger safety,
 - with the overall objective of accelerating the availability of U.S. CTS capabilities.
- New competition open to all U.S. commercial providers for NASA Space Act Agreements (SAAs).
- Pay-for-Performance milestones, April 2011 to no later than May 2012.
- CCDev 2 awards are planned to coincide with the FY11 appropriation (estimated for March) which will determine the exact amount available for awards.
- NASA is currently in a BLACK-OUT period with industry regarding CCDev 2. All information above is public and has been previously disclosed.

NASA's Human Rating Requirements Status

- In May 2010, NASA released to industry the first version of our commercial human rating requirements in a document titled, Commercial Human Rating Plan (CHRP).
- NASA received extensive input from industry on the CHRP and began revising it.
- NASA developed and adopted a concept known as "crew transportation system certification", as opposed to "human rating".
- NASA Authorization Act of 2010, Section 403 (b)(1), required NASA to release its human ratings processes and requirements NLT December 10, 2010.
- On December 9, NASA baselined and released the Commercial Crew Transportation System Certification Requirements for NASA Low Earth Orbit Missions document (see right).

National Aeronautics and Space Administration

| CCTS Certification Requirements | Document No: ESMD-CCTSCR-12.10 | Revision: Basic | Effective Date: December 8, 2010 |

Commercial Crew Transportation System
Certification Requirements
for
NASA Low Earth Orbit Missions

ESMD-CCTSCR-12.10 Revision-Basic

Douglas R. Cooke Associate Administrator Exploration Systems Mission 12/9/10

SLS Reference Vehicle Design Baseline SLS Path: Ares/Shuttle-derived System

- Key Auth Act Direction
 - The Administrator shall, to the extent practicable, extend or modify existing vehicle development and associated contracts
 - The initial capability of the core elements, without an upper stage, of lifting payloads weighing between 70 tons and 100 tons into low-Earth orbit
 - The capability to lift the multipurpose crew vehicle
 - The capability to serve as a backup system for supplying and supporting ISS cargo requirements or crew delivery requirements not otherwise met by available commercial or partner-supplied vehicles
- SLS Reference Vehicle Design
 - 27.5' Diameter LOX/LH2 Core Stage
 - Five RS25 based engines using Shuttle assets then RS25E expendable derivative
 - Two 5-Segment Ares derived SRBs
 - Delivers 108.6t to 30x130 nmi
- Evolved System to 130mT
 - Upper stage with one or two J-2X upper stage engines (trades pending)
 - Draft FY11 CR language dictates concurrent development of upper stage with core vehicle

Space Launch Systems (SLS) Approach

- NASA Reference Vehicle Design for SLS is an Ares/Shuttle-derived LOX/LH2 solution
 - This vehicle comes closest to meeting schedule FOM with opportunities for affordability that could bring costs down to acceptable levels
- NASA will use recently-awarded BAA study contracts and Government Requirements Analysis Cycle to validate decisions through rigorous technical and acquisition process
 - Work with industry on multiple affordability options for heavy lift
 - Validate that Ares/Shuttle derived solution is truly most cost effective
 - Provide alternative acquisition plan in event Reference Vehicle Design is unaffordable
- In parallel with SLS acquisition activities, the Constellation Ares contracts will continue through FY11 to minimize workforce disruptions
- Final decisions on NASA's plans for the SLS will be made during the Acquisition Strategy review process in early 2011.

SLS Near-term Activities

Multi-Purpose Crew Vehicle (MPCV)

- NASA Authorization Act of 2010 calls for an MPCV which:
 - Continues to advance development of the human safety features, designs, and systems in the Orion Project.
 - Serves as primary crew vehicle for missions beyond LEO
 - Conducts regular in-space operations in conjunction with payloads delivered by the Space Launch System or other vehicles in cis-lunar space (rendezvous, docking, EVA)
 - Provides means of delivering crew and cargo to the ISS as a back-up to commercial crew and international partners
- Based on these requirements, NASA has selected the beyond-LEO version of the Orion design ("block 2") as the MPCV Reference Vehicle Design

- Provides crew launch, return, and operation in deep space
- Crew size: 2 to 4
- Crewed mission duration: 21.1 days
- Delta V capability: 5233 ft/s
- Main engine thrust: 7,500 pounds

- Pressurized volume: 690.6 cubic feet
- Net habitable volume: 316 cubic feet
- Skip entries up to 4,800 nmi from lunar return trajectories
- Water landing off California coast
- 5.4 nmi landing accuracy
- Final decisions on NASA's plans for the MPCV will be made during the Acquisition Strategy review process in early 2011.